钨-碳二元系能形成两种晶型的碳化物,即WC和W2C。其中WC是制造硬质合金的主要原料,也是热喷涂领域制备高耐磨涂层的重要原料粉末。WC硬度高,特别是其高温硬度高。WC能很好地被C0、Ni、Fe等金属熔体润湿,尤
以钴溶体对现的润湿性最好。升高温度至金属熔点以上时,界口能溶解在这些金属熔体中,而当温度降低时,又能析出WC0这些优异的性能,使它能用钻或镍等金属做粘结相材料,经高温烧结或包覆处理,形成耐磨性很好的耐磨涂层。
WC的主要缺点是抗高温氧化能力差,在500℃ ~800℃七空气中遭受严重氧化,在试化性气氛中受强热易分解为W2C和碳,即所谓“失碳”。这可通过用耐热抗氧化的金属做包裹层或粘结相,对WC颗粒进行预保护;也可以与TaC、TiC等固溶形成复合碳化物,改善WC的耐热抗氧化性能。WC在Ar气氛中加热至2850℃仍然稳定,在高温氮气中亦不受影响。
W2C的熔点和硬度都比WC高,它能与WC形成W2C十WC共晶混合物, 熔点降低,易于铸造,就是所谓的“铸造碳化钨”或“易熔碳化钨”,其平均含碳量为3.8% ~20% (质量〉,其中含W2C为78% ~ 80%〈质量〉,含WC为20%
~ 22% (质量)。这种铸造碳化钨是成本较低的最硬最耐磨的一种材料。
WC粉末还可与钴基、镍基和铁基自熔性合金粉末、镍铝自粘结复合粉末进
键合,广泛用于制备高耐磨涂层特别是耐磨粒磨损、硬面磨损和泥砂冲蚀磨损等领域。碳化钨粉末主要用作热喷涂耐磨涂层的原料粉末。
可采用真空等离子喷涂、保护气氛等离子喷涂耐磨涂层,但碳化钨粉(WC)是生产硬质合金的主要原料,化学式WC。全称为 Wolfram Carbide, 也译作tungsten carbide为黑色六方晶体,有金属光泽,硬度与金刚石相近,为电、热的良好导体。熔点2870℃, 沸点6000℃,相对密度 15.63(18℃)。碳化钨不溶于水、盐酸和硫酸,易溶于硝酸-氢氟酸的混合酸中。纯的碳化钨易碎,若掺入少量钛、钴等金属,就能减少脆性。用作钢材切割工具的碳化钨,常加入碳化钛、碳化钽或它们的混合物,以提高抗爆能力。碳化钨的化学性质稳定。提炼方法: 用金属钨粉和炭黑为原料,按一定比例配成混合料,将混合料装入石墨舟皿中,置于炭管炉内或高中频感电炉中,在一定温度下进行炭化,再经球磨、筛分即得碳化钨粉。粗晶碳化钨分子式为WC,具有一些中、细晶WC粉不同的特殊性能和用途,尤其是高温WC具有结构缺陷少、显微硬度高、微观应变小等优点,广泛应用在地矿开采、石油钻探、车床加工等方面。硬度仅次于金刚石,价值极高。目前粗晶WC的生产方法主要有:1.钨粉高温碳化 高温长时碳化,可以使WC的晶格缺陷降至最低、微观应变最小,WC的塑性得到改善。这是目前国内的主要生产方式。碳化的温度不宜超过1800-1900℃,在超过1800℃,WC晶粒间易发生晶界融合长大,致使WC粒度分布不均。一些研究表明,降低原料钨的粒度,提高碳化温度,降低碳化时间,可以提高获得的WC品质。2.氧化钨掺锂盐的中温还原和高温碳化 该法原理为:通过加入添加剂,加速WO3还原过程中的挥发沉积速率,致使钨粉粒度在较低的温度下得以长大,用于钨粉长大的添加剂为锂盐,该法主要用于制取矿用合金和冷微模合金。3.添加钴、镍高温碳化 在钨粉配碳时加入少量钴、镍或它们的氧化物,可以改变碳化机理,提高碳化的速度,此种方法生产的粗晶WC的晶粒度受配钴量的影响极大,配钴量越大所得WC越粗。4.添加钠盐法 在APT中添加钠盐,然后在较高的温度下还原,可得粒度大于10μm的粗钨粉,再经高温碳化可得粗颗粒WC粉。该法还处于研究中,一些技术还不成熟。5 .APT快速锻烧快速还原法 此法的实质是将APT在850-1000℃下于氧化气氛中快速加热锻烧,然后在氢气炉中快速加热到1100-1300℃的温度下还原,用此种方法可制备粒度为25-36μm的钨粉。6. 卤化物沸腾层氢还原法 将钨的氯化物或氟化物在沸腾层中用H2还原。首先将H2和原始钨粉送入反应器底部,制成钨沸腾层,而卤化物蒸气由反应器上部通入反应器内,在给定的最佳温度下被H2还原成钨粉,并沉积在原始钨粉上,使原始钨粉逐渐粗化,定期有反应器内部卸出钨粉。用此种方法制备的钨粉粒度大于40μm。7.粗晶铝热工艺 通过高吸热反应使WC直接从钨精矿中生产出来,该法能生产高纯度、粗颗粒、大块、单相WC晶粒。8.钨精矿熔盐碳化法(气体喷射法) 首先在1050-1100℃的高温下,用Na2SiO3-NaCl熔盐将钨精矿分解,将所生成的Na2WO4-NaCl熔盐相同含有Fe、Mn、Ca的硅酸盐相分离,然后用甲烷喷入熔盐相中,生成粗晶WC。该法优点成本低,约为通常60%,缺点是杂质(Mo、Cr、Fe、Ni、Si)含量偏高,需要长时间的化学处理。